Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38621768

RESUMO

Objectives: This study investigated the characteristics of coronavirus disease 2019 (COVID-19) among individuals with disabilities on a nationwide scale in the Republic of Korea, as limited research has examined this population. Methods: Between January 1 and November 30, 2021, a total of 5,687 confirmed COVID-19 cases among individuals with disabilities were reported through the Korea Disease Control and Prevention Agency's COVID-19 web reporting system. Follow-up continued until December 24, and demographic, epidemiological, and clinical characteristics were analyzed. Results: Individuals with disabilities represented approximately 1.5% of confirmed cases, with a mean age of 58.1 years. Most resided in or near metropolitan areas (86.6%) and were male (60.6%). Frequent sources of infection included home (33.4%) and contact with confirmed cases (40.7%). Many individuals (75.9%) had underlying conditions, and 7.7% of cases were severe. People with disabilities showed significantly elevated risk of severe infection (adjusted odds ratio [aOR], 1.63; 95% confidence interval [CI], 1.47-1.81) and mortality (aOR, 1.65; 95% CI, 1.43-1.91). Vaccination against COVID-19 was associated with significantly lower risk of severe infection (aORs for the first, second, and third doses: 0.6 [95% CI, 0.42-0.85], 0.28 [95% CI, 0.22-0.35], and 0.16 [95% CI, 0.05-0.51], respectively) and death (adjusted hazard ratios for the first and second doses: 0.57 [95% CI, 0.35-0.93] and 0.3 [95% CI, 0.23-0.40], respectively). Conclusion: Individuals with disabilities showed higher risk of severe infection and mortality from COVID-19. Consequently, it is critical to strenghthenCOVID-19 vaccination initiatives and provide socioeconomic assistance for this vulnerable population.

2.
J Korean Med Sci ; 39(4): e40, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38288541

RESUMO

BACKGROUND: In order to minimize the spread of seasonal influenza epidemic to communities worldwide, the Korea Disease Control and Prevention Agency has issued an influenza epidemic alert using the influenza epidemic threshold formula based on the results of the influenza-like illness (ILI) rate. However, unusual changes have occurred in the pattern of respiratory infectious diseases, including seasonal influenza, after the coronavirus disease 2019 (COVID-19) pandemic. As a result, the importance of detecting the onset of an epidemic earlier than the existing epidemic alert system is increasing. Accordingly, in this study, the Time Derivative (TD) method was suggested as a supplementary approach to the existing influenza alert system for the early detection of seasonal influenza epidemics. METHODS: The usefulness of the TD method as an early epidemic alert system was evaluated by applying the ILI rate for each week during past seasons when seasonal influenza epidemics occurred, ranging from the 2013-2014 season to the 2022-2023 season to compare it with the issued time of the actual influenza epidemic alert. RESULTS: As a result of applying the TD method, except for the two seasons (2020-2021 season and 2021-2022 season) that had no influenza epidemic, an influenza early epidemic alert was suggested during the remaining seasons, excluding the 2017-2018 and 2022-2023 seasons. CONCLUSION: The TD method is a time series analysis that enables early epidemic alert in real-time without relying on past epidemic information. It can be considered as an alternative approach when it is challenging to set an epidemic threshold based on past period information. This situation may arise when there has been a change in the typical seasonal epidemic pattern of various respiratory viruses, including influenza, following the COVID-19 pandemic.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Viroses , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias , Viroses/epidemiologia , COVID-19/epidemiologia , Estações do Ano
3.
Acc Chem Res ; 55(16): 2224-2234, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35921179

RESUMO

Conjugated polymers have been actively studied as an alternative to inorganic semiconductors for their unique optical and electrical properties and low-cost solution processability. However, typical conjugated polymer films contain numerous defects that negatively affect their transport properties, which remains a major issue despite much effort to develop ways to improve the molecular packing structure. In principle, conjugated block copolymers (BCPs) composed of a rod-type conjugated polymer and a coil-type insulating polymer can assemble into various types of ordered nanostructures based on the microphase segregation of two polymer blocks. However, such assembly typically requires a relatively large volume fraction of the coil block or modification of the rod block, both of which tend to impede charge transport. As an alternative, we and others have fabricated nanoscale assemblies of conjugated BCPs via solution-phase self-assembly, which can be used as building blocks for construction of extended nanoarrays of conjugated polymers. In particular, BCPs containing poly(3-hexylthiophene) (P3HT), a conjugated polymer widely used for its high hole mobility, form highly ordered and technologically relevant one-dimensional (1D) nanowires with controlled lengths. A range of well-defined assembly structures such as square plates, ribbons, vesicles, and helices have been prepared from various conjugated BCPs, resembling those of peptide self-assembly, forming diverse nanostructures through combinations of π-π stacking, hydrogen bonding, and hydrophobic interactions.When the self-assembly of P3HT BCPs takes place at an air-water interface, the initially formed polymer nanowires further assemble into hierarchical two-dimensional (2D) nanoarrays with solvent evaporation. The fluidic nature of the water subphase allows fabrication of highly ordered assembly structures from P3HT BCPs with high P3HT content. The ultrathin free-standing film integrated in a field effect transistor (FET) showed orders of magnitude higher current and hole mobility compared to that fabricated by conventional spin-coating. Furthermore, binary self-assembly of a P3HT BCP and quantum dots (QDs) at the air-water interface generates well-ordered 2D films of alternating P3HT nanowires and 1D QD arrays. Unlike coil-coil BCP systems, QDs reside at the interface between P3HT and coil blocks for a broad range of QD sizes due to the strong P3HT packing interactions and the flexible water subphase, forming tight p-n junctions for enhanced photocurrent. Incorporation of magnetic nanoparticles can further improve the degree of order, enabling fabrication of long-range order and direction-controlled P3HT nanoarrays through magnetic-field induced self-assembly.The conjugated BCP approach is highly modular and can be combined with various types of functional molecules, polymers, and nanoparticles, offering a powerful platform for fabrication of functional polymer nanostructures with desired morphologies and properties. This Account introduces recent advances in the self-assembly of π-conjugated BCPs, describes how they differ from prototypical coil-coil type BCPs, and discusses current issues and future outlooks.


Assuntos
Nanoestruturas , Ligação de Hidrogênio , Nanoestruturas/química , Polímeros/química , Solventes , Água
4.
Nanoscale ; 14(35): 12849-12855, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039954

RESUMO

Here, we report a simple and general approach to fabricate free-standing two-dimensional (2D) sheets of nanoparticles by the simultaneous self-assembly of hydrophobic nanoparticles and hydrophilic polymers at the liquid-liquid interface. The nanoparticle-polymer interaction at the interface generates well-defined 2D sheets of densely packed nanoparticles with a lateral dimension of tens of micrometers. The nanosheets transferred in water are stable over months without any additional cross-linking step. The method is applicable for a broad range of nanoparticles including oxide, semiconductor, and metal nanoparticles as well as functional polymers.

5.
ACS Appl Mater Interfaces ; 14(6): 8266-8273, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129351

RESUMO

Here, we report the magnetic field-induced self-assembly of a conjugated block copolymer, poly(3-hexylthiopene)-block-poly(ethylene glycol) (P3HT-b-PEG), and iron oxide nanoparticles (IONPs) at the air-water interface. Binary self-assembly of P3HT-b-PEG and IONPs at the interface results in nanoparticle-embedded P3HT-b-PEG nanowire arrays with a micrometer-scale domain size. Under the magnetic field, the field-induced magnetic interaction significantly improves the degree of order, generating long-range ordered, direction-controlled nanoarrays of P3HT-b-PEG and IONPs, where IONPs are aligned in the direction of the magnetic field over a sub-millimeter scale. The size of IONPs is an important factor for the formation of an ordered assembly structure at the nanometer scale, as it dictates the magnetic dipole interaction and the entropic interaction between nanoparticles and polymers. The consideration of magnetic dipole interactions suggests that the field-induced self-assembly occurs through the formation of intermediate magnetic subunits composed of short IONP strings along the semirigid P3HT nanowires, which can be aligned through the magnetic interactions, ultimately driving the long-range ordered self-assembly. This study demonstrates for the first time that the magnetic field-induced self-assembly can be used to generate macroscopically ordered polymer films with a nanometer-scale order in low fields.

6.
Sci Adv ; 7(49): eabi5419, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860549

RESUMO

Thermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations. The nanoparticles in a GLC exhibit non-Gaussian, diffusive motion, signifying dynamic fluctuation of the diffusion coefficient due to the dynamically heterogeneous environment surrounding nanoparticles, including organic ligands on the nanoparticle surface. Our study shows that the dynamics of nanoparticle coalescence is controlled by two elementary processes: diffusion-limited encounter complex formation and the subsequent coalescence of the encounter complex through rotational motion, where surface-passivating ligands play a critical role.

7.
Nano Lett ; 21(2): 1175-1183, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33416334

RESUMO

Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.

8.
ACS Appl Mater Interfaces ; 13(3): 4442-4449, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428372

RESUMO

Responsive cooling materials that mimic sweat glands have gained popularity because they are efficient and do not require artificial energy sources. Temperature-responsive hydrogels sweat above their volume transition temperature through the release of water and exhibit excellent cooling ability. However, thus far, practical applications have not been possible because the water in these materials cannot be preserved in cool environments. To address this issue, this paper presents a simple composite of poly(N-isopropylacrylamide) and polydimethylsiloxane that offers excellent on-off control over water evaporation and can be used repeatedly; the proposed composite features an evaporation rate of 2.97 g/h above the lower critical solution temperature (LCST) and 0.08 g/h below the LCST. This 35.7-fold change in the water evaporation rate is comparable to that in mammalian sweat glands. The responsive on-off control relies on the structures of the composite and the dry layers formed on the surface of the composite in cool environments. The proposed material effectively regulates water evaporation and offers a novel, low-cost cooling strategy suitable for numerous applications.

9.
ACS Nano ; 14(9): 12203-12209, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32924436

RESUMO

Herein, we report the cooperative self-assembly of nanoparticles and block copolymers at the air-water interface, which can generate highly uniform and readily transferable composite films with tunable nanoscale architecture and functionalities. Interestingly, the incorporation of nanoparticles significantly affects the self-assembly of block copolymers at the interface. The nanoparticle-induced morphology change occurs through distinct mechanisms depending on the volume fraction of the hydrophobic block. For block copolymers with a relatively small hydrophobic volume fraction, the morphology transition occurs through the nanoparticle-induced swelling of a selective block. When the hydrophobic volume fraction is large enough, added nanoparticles promote the breath figure assembly, which generates uniform honeycomb-like porous structures with unusual nanoscale periodicity. This approach is generally applicable to various types of nanoparticles, constituting a simple one-step method to porous thin films with various functionalities.

10.
ACS Nano ; 14(3): 3660-3668, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32119523

RESUMO

Stretchable energy storage devices are of great interest because of their potential applications in body-friendly, skin-like, wearable devices. However, stretchable batteries are very challenging to fabricate. The electrodes must have a degree of stretchability because the active materials occupy most of the volume, and the separator and packaging should also be stretchable. Here, an all-component stretchable lithium-ion battery was realized by leveraging the structural stretchability of re-entrant micro-honeycomb graphene-carbon nanotube (CNT)/active material composite electrodes and a physically cross-linked gel electrolyte, without using an inactive elastomeric substrate or matrix. Active materials interconnected via the entangled CNT and graphene sheets provided a mechanically stable porous network framework, and the inwardly protruding framework in the re-entrant honeycomb structure allowed for structural stretching during deformation. The composite network consisting solely of binder-free, highly conductive materials provided superior electron transfer, and vertically aligned microchannels enabled facile ion transport. Additionally, the physically cross-linked gel electrolyte increased the mechanical stability upon deformation of the electrodes and was effective as a stretchable separator. The resulting stretchable battery showed a high areal capacity of 5.05 mAh·cm-2, superior electrochemical performance up to 50% strain under repeated (up to 500) stretch-release cycles, and long-term stability of 95.7% after 100 cycles in air conditions.

11.
ACS Appl Mater Interfaces ; 12(4): 5099-5105, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31904932

RESUMO

Here, we report that long-range order, direction-controlled, ultrathin conjugated polymer films can be formed by the self-assembly of conjugated block copolymers (i.e., poly(3-hexylthiophene)-block-poly(ethylene glycol)) at inclined air-water interfaces. Structure analyses revealed well-aligned nanowire arrays of poly(3-hexylthiophene) with a dramatically increased ordered domain size compared to the polymer films formed on a flat water surface. The improved degree of order was attributed to the flow field created by the enhanced solvent evaporation at the top of the water contact line. Note that it is challenging to prepare such well-ordered and molecularly thin films of conjugated polymers by conventional fabrication methods. The long-range order polymer film showed hole mobility an order of magnitude higher than polymer films formed on a flat interface when implemented as an active layer of field-effect transistor devices. This study demonstrates that a simple interface modification can significantly impact the self-assembly process, structure, and function of polymer films formed at the air-liquid interface.

12.
ACS Appl Mater Interfaces ; 11(31): 28538-28545, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31290318

RESUMO

Controlling the nanoscale morphology of conducting polymer/nanoparticle hybrid films is a highly desired but challenging task. Here, we report that such functional hybrid films with unprecedented structural order can be formed through the self-assembly of conjugated block copolymers and CdSe quantum dots at the air-water interface. The one-step assembly of quantum dots and block copolymers composed of polythiophene and polyethylene glycol (P3HT-b-PEG) at the fluidic interface generated a highly ordered assembly structure of P3HT nanowires and one-dimensional quantum dot arrays. Structure analyses revealed a unique self-assembly behavior and size dependency, which are distinct from the conventional self-assembly of coil-type polymers on solid substrates. Interestingly, hydrophobic quantum dots reside at the interface between P3HT and PEG domains without disrupting the P3HT packing structure, which is advantageous for the optoelectronic properties. Furthermore, large particles bridge the P3HT nanowires at both ends, while small particles decorate each P3HT/PEG interfaces, thus forming tight p-n junctions for a broad size range of nanoparticles. The nanoparticle-incorporated hybrid films showed more than an order of magnitude higher photocurrent and light sensitivity compared to polymer-only films, consistent with the assembly structure with close contact between the organic and inorganic semiconductors.

13.
Nanoscale ; 9(35): 13272-13280, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28858356

RESUMO

Stretchable energy storage systems are essential for the realization of implantable and epidermal electronics. However, high-performance stretchable supercapacitors have received less attention because currently available processing techniques and material structures are too limited to overcome the trade-off relationship among electrical conductivity, ion-accessible surface area, and stretchability of electrodes. Herein, we introduce novel 2D reentrant cellular structures of porous graphene/CNT networks for omnidirectionally stretchable supercapacitor electrodes. Reentrant structures, with inwardly protruded frameworks in porous networks, were fabricated by the radial compression of vertically aligned honeycomb-like rGO/CNT networks, which were prepared by a directional crystallization method. Unlike typical porous graphene structures, the reentrant structure provided structure-assisted stretchability, such as accordion and origami structures, to otherwise unstretchable materials. The 2D reentrant structures of graphene/CNT networks maintained excellent electrical conductivities under biaxial stretching conditions and showed a slightly negative or near-zero Poisson's ratio over a wide strain range because of their structural uniqueness. For practical applications, we fabricated all-solid-state supercapacitors based on 2D auxetic structures. A radial compression process up to 1/10th densified the electrode, significantly increasing the areal and volumetric capacitances of the electrodes. Additionally, vertically aligned graphene/CNT networks provided a plentiful surface area and induced sufficient ion transport pathways for the electrodes. Therefore, they exhibited high gravimetric and areal capacitance values of 152.4 F g-1 and 2.9 F cm-2, respectively, and had an excellent retention ratio of 88% under a biaxial strain of 100%. Auxetic cellular and vertically aligned structures provide a new strategy for the preparation of robust platforms for stretchable energy storage electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...